Common Fluid Power Formulas

Torque and horsepower relations: $\mathbf{T}=\mathbf{H P} \times 5252 \div$ RPM HP $=\mathbf{T} \times$ RPM $\div 5252$ RPM $=\mathbf{H P} \times 5252 \div$ T Torque values are in foot pounds.

Hydraulic (fluid power) horsepower: HP = PSI x GPM $\div 1714$ PSI is gauge pressure in pounds per square inch, GPM is oil flow in gallons per minute.

Velocity of oil flow in pipe: $\mathbf{V}=\mathbf{G P M} \times \mathbf{0 . 3 2 0 8} \div \mathbf{A} \mathrm{V}$ is oil velocity in feet per second, GPM is flow in gallons per minute, A is inside area of pipe in square inches.

Charles' Law for behavior of gases: $\mathbf{T}_{1} \mathbf{V}_{\mathbf{2}}=\mathbf{T}_{\mathbf{2}} \mathbf{V}_{\mathbf{1}}$, or $\mathbf{T}_{\mathbf{1}} \mathbf{P}_{\mathbf{2}}=\mathbf{T}_{\mathbf{2}} \mathbf{P}_{\mathbf{1}} \mathbf{T}_{1}, \mathrm{P}_{1}$ and V_{1} are initial temperature, pressure and volume, and T_{2}, P_{2} and V_{2} are final conditions.

Boyle's Law for behavior of gases: $\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}} \mathrm{P}_{1}, \mathrm{~V}_{1}$ are initial pressure and volume; P_{2} and V_{2} are final conditions.

Circle Formulae: Area $=\Pi r_{2}$, or $\Pi D_{2} \div \mathbf{4}$ Circumference $=\mathbf{2} \Pi r$, or $\Pi D r$ is radius, D is diameter, inches; Π is 3.14

Heat equivalent of fluid power: BTU per hour $=$ PSI \times GPM $\times \mathbf{1 T}^{1 ⁄ 2}$
Hydraulic Cylinder Piston travel speed: $\mathbf{S}=\mathbf{C I M} \div \mathbf{A} S$ is piston travel speed, inches per minute, CIM is oil flow into cylinder, cubic inches per minute, A is piston area in square inches.

Thrust or force of any cylinder: $\mathbf{T}=\mathbf{A} \mathbf{x} \mathbf{P S I} \mathrm{T}$ is thrust or force, in pounds, A is piston area in square inches, PSI is gauge pressure.

Force for piercing or shearing sheet metal: $\mathbf{F}=\mathbf{P} \mathbf{x} \mathbf{T} \mathbf{x S I} F$ is force required, in pounds, P is perimeter around area to be sheared, in inches, T is sheet thickness in inches; PSI is the sheer strength rating of the material in pounds per square inch.

Side load on pump or motor shaft: $\mathbf{F}=(\mathbf{H P} \mathbf{x} \mathbf{6 3 0 2 4}) \div(\mathbf{R P M} \times \mathbf{R}) \mathrm{F}$ is the side load, in pounds, against shaft; R is the pitch radius of sheave on pump shaft, in inches; HP is driving power applied to shaft.

Effective force of a cylinder working at an angle to direction of the load travel: $\mathbf{F}=$ $\mathbf{T} \mathbf{x} \boldsymbol{\operatorname { s i n }} \mathrm{A} T$ is the total cylinder force, in pounds; F is the part of the force which is effective, in pounds, A is the least angle, in degrees, between cylinder axis and load direction.

Heat radiating capacity of a steel reservoir: HP = 0.001 $\times \mathbf{A} \times$ TD HP is the power radiating capacity expressed in horsepower; A is surface area, in square feet; TD is temperature difference in ${ }^{\circ} \mathrm{F}$ between oil and surrounding air.

WWW.SAWYERSYSTEMSLLC.COM
1101 NE 144th Street, Suite A-103, VANCOUVER, WA 98685
(360) 574-7809

Burst pressure of pipe or tubing: $\mathbf{P}=\mathbf{2 t} \mathbf{x} \mathbf{S} \div \mathbf{O} \mathrm{P}$ is burst pressure in PSI, t is wall thickness, in inches; S is tensile strength of material in PSI; O is outside diameter, in inches.

Relationship between displacement and torque of hydraulic motor: $\mathbf{T}=\mathbf{D} \times \mathbf{P S I} \div$ $\mathbf{2 4} \boldsymbol{\pi} \mathrm{T}$ is torque in foot pounds, D is displacement in cubic inches per revolution, PSI is pressure difference across motor, Π is 3.14

Rules of Thumb

Horsepower for driving a pump: For every 1 HP of drive, the equivalent of 1 GPM @ 1500 PSI can be produced.

Horsepower for idling a pump: To idle a pump when it is unloaded will require about 5\% of its full rated horsepower.

Compressibility of hydraulic oil: Volume reduction is approximately 0.5% for every 1000 PSI pressure.

Compressibility of water: Volume reduction is about 0.3% for every 1000 PSI pressure. Wattage for heating hydraulic oil: Each watt will raise the temperature of 1 gallon of oil by $1^{\circ} \mathrm{F}$ per hour.

Flow velocity in hydraulic lines: Pump suction lines 2 to 4 feet/second; pressure lines up to 500 PSI, 10 to 15 feet/second; pressure lines 500 to 3000 PSI, 15 to 20 feet/second; pressure lines over 3000 PSI, 25 feet/second; all oil lines in air-over-oil system, 4 feet/second.

